July 29, 2013

Expression of recombinant antibodies


Front. Immunol., 29 July 2013 | doi: 10.3389/fimmu.2013.00217

Expression of recombinant antibodies

  • Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Keywords: recombinant antibody, procaryotes, yeast, fungi, insect cells, mammalian cell, transgenic organisms
Citation: Frenzel A, Hust M and Schirrmann T (2013) Expression of recombinant antibodies. Front. Immunol. 4:217. doi: 10.3389/fimmu.2013.00217
Received: 25 March 2013; Accepted: 15 July 2013;
Published online: 29 July 2013.
Edited by:
Danièle Altschuh, Centre National de la Recherche Scientifique, France
Reviewed by:
John D. Colgan, University of Iowa, USA
Andrea Gorlani, University of California Irvine, USA
Copyright: © 2013 Frenzel, Hust and Schirrmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
*Correspondence: André Frenzel, Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany e-mail: andre.frenzel@tu-braunschweig.de

No comments:

Post a Comment