Research article
David Sweeney12†, Fay Hollins1†, Edith Gomez12, Rajendra Mistry2, Ruth Saunders1,Robert Alfred John Challiss2* and Christopher Edward Brightling1*
David Sweeney and Fay Hollins contributed equally to this work.
Published: 13 February 2015
Abstract (provisional)
Background
Asthma is characterized by airway hyper-responsiveness and variable airflow obstruction, in part as a consequence of hyper-contractile airway smooth muscle, which persists in primary cell culture. One potential mechanism for this hyper-contractility is abnormal intracellular Ca2+ handling.
Methods
We sought to compare intracellular Ca2+ handling in airway smooth muscle cells from subjects with asthma compared to non-asthmatic controls by measuring: i) bradykinin-stimulated changes in inositol 1,4,5-trisphosphate (IP3) accumulation and intracellular Ca2+ concentration, ii) sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) expression, iii) mechanisms of cytoplasmic Ca2+ clearance assessed following instantaneous flash photolytic release of Ca2+ into the cytoplasm.
Results
We found no differences in airway smooth muscle cell basal intracellular Ca2+ concentrations, bradykinin-stimulated IP3 accumulation or intracellular Ca2+ responses. Quantification of SERCA2 mRNA or protein expression levels revealed no differences in ASM cells obtained from subjects with asthma compared to non-asthmatic controls. We did not identify differences in intracellular calcium kinetics assessed by flash photolysis and calcium uncaging independent of agonist-activation with or without SERCA inhibition. However, we did observe some correlations in subjects with asthma between lung function and the different cellular measurements of intracellular Ca2+ handling, with poorer lung function related to increased rate of recovery following flash photolytic elevation of cytoplasmic Ca2+ concentration.
Conclusions
Taken together, the experimental results reported in this study do not demonstrate major fundamental differences in Ca2+ handling between airway smooth muscle cells from non-asthmatic and asthmatic subjects. Therefore, increased contraction of airway smooth muscle cells derived from asthmatic subjects cannot be fully explained by altered Ca2+ homeostasis.
The complete article is available as a provisional PDF. The fully formatted PDF and HTML versions are in production.
|
No comments:
Post a Comment