Tobias Weinmann, Jessica Gerlich, Sabine Heinrich, Dennis Nowak, Jennifer Gerdes, Jenny Schlichtiger, Erika von Mutius, Bianca Schaub,Christian Vogelberg, Diana Roller and Katja Radon
BMC Public Health201515:1210
BMC Public Health201515:1210
Abstract
Background
Atopic diseases are a major burden of disease on a global scale. Regarding their aetiology, the early years of life are assumed to play a crucial role. In addition, there is growing evidence that elucidating the impact of cross-generational effects and epigenetic mechanisms such as DNA methylation can substantially widen the scientific knowledge of the occurrence and progression of these diseases. We are thus aiming at following the course of asthma, allergies, and potential risk factors for their occurrence across three generations by establishing a birth cohort in the offspring of an existing population-based cohort.
Methods/Design
2051 young adults who have been recruited in 1995 for Phase II of the International Study of Asthma and Allergies in Childhood (ISAAC) and who have subsequently been followed-up by the Study on Occupational Allergy Risks (SOLAR) are asked bi-annually since 2009 if they conceived a child in the meantime. If parenthood is reported, parents are invited to enrol along with their children in the ACROSSOLAR cohort. Participation involves completing a questionnaire assessing general and health-related information about the course of the pregnancy and the first year of life of their children. Subsequently, the children are followed up until primary school age when asthma and allergies can be diagnosed reliably. In addition, DNA for epigenetic analysis will be collected and analysed. Longitudinal data analysis techniques will then be used to assess potential associations between early-life exposures and onset of childhood asthma and allergies taking into account epigenetics.
Discussion
Birth cohorts are especially suited to elucidate the impact of genetic predisposition, epigenetics, exposures during the first years of life, and gene-environment interactions on the occurrence and progression of asthma and allergies. By building upon an existing cohort, ACROSSOLAR offers a unique and cost-effective opportunity to investigate the aetiology of atopic disease in a prospective and cross-generational way.
Keywords
Atopic disease Asthma Allergy Birth cohort Epigenetics Environmental health DNA methylation Respiratory tract diseases Cross-generational effects
No comments:
Post a Comment