Andre Valcour, PhD, DABCCCorrespondence information about the author PhD, DABCC Andre ValcourEmail the author PhD, DABCC Andre Valcour
,
Jonas Lidholm, PhD
,
Magnus P. Borres, MD, PhD
,
Robert G. Hamilton, PhD, DABMLI
Open Access
Abstract
Background
Objective
To investigate the association between patient demographics (age, location) and patterns of allergic sensitization to hazelnut components across the United States and to investigate the degree of correlation between hazelnut sensitization with sensitization to other tree nuts, peanuts, and their components.
Methods
Serum samples from 10,503 individuals with hazelnut extract specific IgE (sIgE) levels of 0.35 kUA/L or higher were analyzed for IgE antibodies to Cor a 1, 8, 9, and 14 by ImmunoCAP. A subset of these patients were analyzed for IgE antibodies to peanut, walnut, and cashew nut IgE along with associated components.
Results
Among hazelnut sensitized individuals, children (-3 years old) were predominantly sensitized to Cor a 9 and Cor a 14. Conversely, Cor a 1 sIgE sensitization was much higher in adults than children, especially in the Northeastern United States. Cor a 8 sensitization was relatively constant (near 10%) across all ages. Cosensitization of hazelnut with other tree nuts and peanuts was related to correlation of IgE concentrations of individual component families.
Conclusion
We conclude that sensitization to individual hazelnut components is highly dependent on age and/or geographic location. Component correlations suggest that cosensitization to hazelnut and walnut may be caused by their pathogenesis-related protein 10 allergens, nonspecific lipid transfer proteins, or seed storage proteins, whereas hazelnut and peanut cosensitization is more often caused by cross-reactivity of pathogenesis-related protein 10 (Cor a 1 and Ara h 8) and nonspecific lipid transfer proteins (Cor a 8 and Ara h 9).
No comments:
Post a Comment