September 9, 2024

Thoughtful prescription of inhaled medication has the potential to reduce inhaler-related greenhouse gas emissions by 85

Vartiainen V, Woodcock AA, Wilkinson A et al. BMJ Open Respir Res. 2024 Sep 1;11(1):e001782. doi: 10.1136/bmjresp-2023-001782.

Abstract

Introduction Both physicians and patients are increasingly aware of the environmental impacts of medication. The shift of treatment paradigm towards MART-treatment (Maintenance and Reliever Therapy) in asthma affects the treatment-related emissions. The carbon footprint of inhaled medication is also tied to the type of the device used. Today the most commonly used propellant-containing pressurised metered-dose inhalers (pMDIs) have a carbon footprint typically 20–40-fold higher than propellant-free dry powder inhalers (DPIs) and soft mist inhalers.

Methods We analysed the carbon footprint of inhaled medications in Europe using published life cycle analyses of marketed inhalers and comprehensive 2020 European sales data. In addition, we give an estimate on treatment-related emissions of different treatment regimens on Global Initiative for Asthma (GINA) step 2.

Estimated carbon greenhouse gas emissions from pMDI devices (CO2e) in EU,
EPA estimate for US Emissions and MCTOC estimate for global emissions
as well as estimated emissions from corresponding number of DPIs.
Results There is potential to reduce the carbon footprint of inhaled medications by 85% if DPIs are preferred over pMDIs. Emissions from pMDIs in the EU were estimated to be 4.0 megatons of carbon dioxide equivalent (MT CO2e) and this could be reduced to 0.6 MT CO2e if DPIs were used instead.

In the treatment of moderate asthma with DPI, an as-needed combination of inhaled corticosteroid and long-acting beta-agonist in a single inhaler had a substantially lower annual carbon footprint (0.8 kg CO2e) than the more traditional maintenance therapy with an inhaled corticosteroid alone with as-needed short-acting beta-agonist (2.9 kg CO2e).

Discussion There has been an urgent call for healthcare to reduce its carbon footprint for appropriate patients with asthma and chronic obstructive pulmonary disease (COPD), changing to non-propellant inhalers can reduce the carbon footprint of their treatment by almost 20-fold.

PDF

No comments:

Post a Comment